Решение обратных задач теплопроводности для элементов конструкций простой геометрической формыМатериалы / Решение обратных задач теплопроводности для элементов конструкций простой геометрической формыСтраница 4
Таким образом, граничные условия при X = 1 восстанавливаются соотношением (6), в котором функции находятся из решения интегральных уравнений (5)
(7)
где правая часть задается приближенно, то есть
Здесь - числовой параметр, характеризующий погрешность правой части уравнения (7).
Задача (7) является, в общем случаи некорректно поставленной /12/. Наиболее распространенным в настоящее время эффективным регуляризующим алгоритмом для ее решения является алгоритм, основанный на минимизации функционала А.Н.Тихонова /12/.
(8)
С последующим выбором параметра регуляризации по так называемому принципу невязки.
Например, если - какая - либо экстремаль функционала (8), реализующая его глобальный минимум при заданном и фиксированном , то числовой параметр определяется из условия
(9)
Регуляризующий алгоритм (7) - (9) подробно изучен в /12/ и обладает устойчивостью к малым возмущениям правой части (7).
Правая часть уравнения (7) при решении формировалась следующим образом. Функция характеризующая изменение температуры поверхности, задавалась таблицей. Начальные условия для 1, 2, … , N-1) находились из соотношения /3/:
(10)
где , - распределение температуры, заданное в начальный момент времени. Откуда для равномерного распределения температуры в начальный момент времени имеет
1, 2, … , N-1 (11)
Из анализа теплофизических и геометрических характеристик конструкции камеры сгорания следует возможность представления системы пластин теплового отношения (рис.1) в виде пластины из теплозащитного покрытия и оболочки, которую можно рассматривать как тепловую емкость. Это дает возможность воспользоваться для построения решения обратной тепловой задачи для заданного узла решением задачи Коши (3). В системе координат, представленной на Рис.1, поверхность при X = 0 будем считать теплоизолированной, то есть
(12)