Анализируя современное мировое состояние проектирования топок, Швейцарское центральное лесное ведомство подчёркивает целесообразность использования решёток в бытовых дровяных печах (вопреки рекомендациям правительственных органов США). Но решётку предлагается делать (и в печах, и особенно в каминах, в том числе и в виде корзины для дров на глухом поде) строго ограниченных размеров. Причём соотношение расходов первичного и вторичного воздуха должно отвечать конструкции камеры сжигания и виду древесного топлива (www.fao.org). Имеется в виду, что решётка в дровяных печах всё же создаёт значительные удобства в части удаления золы (пепла) и бывает полезной при розжиге печи, когда требуется совсем небольшой расход воздуха. А на этапе интенсивного (развитого, установившегося) горения, когда решётка обычно завалена горящими углями или обугленными поленьями, весь кислород потребляется на горение углей. При этом увеличение площади решётки с увеличением расхода воздуха снизу через слой углей влечёт за собой увеличение выхода летучих в условиях сильного нагрева дров раскалёнными углями, рост высоты пламени и снижение полноты сгорания летучих, в том числе с появлением дымления. Поэтому, небольшой размер решётки реализует достоинства решётки (на этапах растопки и дожигания углей) и достоинства глухого пода (на этапе установившегося горения).

Размер факела возрастает не только с повышением расхода горючего газа и с уменьшенем концентрации горючего газа внутри факела, но и с уменьшением концентрации кислорода вне факела. Поскольку первичный воздух (через решётку) определяет расход и концентрацию летучих в факеле, а вторичный воздух определяет концентрацию кислорода вне факела, то варьируя соотношения первичного и вторичного воздуха можно в принципе регулировать высоту факела и степень сжигания летучих (включая и сажистые частицы). Но все эти зависимости весьма сложны. Например, подкидывая в раскалённую докрасна теплоемкую топку новую порцию дров, мы резко повышаем расход горючих газов за счёт «взрывного» пиролиза поленьев (А.Ф.Бацулин). Если при этом мы не изменяем расходов первичного и вторичного воздуха, то за счет быстрой выработки кислорода его концентрация у верхушки факела снижается и, несмотря на повышение концентрации горючего газа внутри факела, высота факела увеличивается. Факел вынужден «залезать в поисках кислорода» в дымоходы, где, резко охлаждаясь, выделяет чёрный дым (сажу).

Если же мы уменьшаем расход вторичного воздуха, не подбрасывая никаких дров и не изменяя расхода первичного воздуха, то высота факела тоже увеличивается. Но факел становится при этом внешне каким-то размытым, «диффузным», что обусловлено повышением прозрачности жёлтого пламени. Такой режим характерен для современных герметичных металлических печек и чугунных каминных кассет (еврокаминов со стеклянными дверцами). Красивый необычный вид длинных пламен является декоративным достоинством продукции. При увеличении расхода вторичного воздуха пламена приобретают обычный вид костра.

В США рекламируются специальные режимы горения герметичных печей с длинными прозрачно-жёлтыми пламенами, обеспечивающими очень низкий уровень задымлённости выбросов в атмосферу. Чтобы пояснить суть этих режимов, напомним, что сажистые частицы зарождаются в виде ультрамикроскопических постепенно укрупняющихся образований - фулеренов размером 5-50 нм (нанометров), затем кластеров 50-500 мм). Сажистые частицы образуются в нагретых газообразных продуктах пиролиза в ходе конкурентных процессов роста размера микрообразований-зародышей (за счёт осаждения новых слоев на частицу или коагуляции частиц-зародышей) и уменьшения их размера за счёт окисления (обгорания) их поверхностей (и окисления радикалов). Например, в диффузном пламени газовой горелки размер частиц сажи возрастает с высотой (над горелкой) и уменьшается при фиксированной высоте по направлению к внешним слоям пламени (G. Kroner, Aerosol Science and Technology, v. 37, № 10, p. 818-827, 2003). Так и в случае древесины сажистая частица, зарождаясь в углеводородных газах (ещё фильтрующихся внутри обугленного слоя на древесине), постоянно растёт до некого максимального размера в пламени, после чего размер сажистой частицы начинает уменьшаться за счёт окисления. Для обеспечения сгорания сажи надо не допускать чрезмерного роста частиц. Просвечивая пламя свечки лазерной линейкой (с лучом света красного цвета с длиной волны 600 нм), легко видеть, что луч легко проходит жёлтое пламя без заметного рассеяния, что указывает, что размер частиц сажи менее 600 нм. Можно предположить, что если такие частицы резко захолодить для сохранения их размеров, то они в воздухе будут практически невидимыми (сизый дым). Многие, наверно, замечали едва видимый ореол вокруг пламени свечи, обусловленный микроскопическим дымом. Исследование ультрамелких дымов - одна из главных задач экологии, поскольку частицы размером между 1 нм (молекулы) до 100 нм (0,1 мкм) практически пока не изучаются, не идентифицируются и даже не детектируются в газах и жидкостях (в том числе и в атмосферном воздухе), хотя и вносят несомненно вклад в разные процессы (в том числе биологические). Дым с размером частиц менее 100 нм практически невидим, но тем не менее, ясно, что такой дым также неблагоприятен для здоровья человека, хотя вдыхается и выдыхается без осаждения.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24