В изображенном на рисунке цикле изоэнтропа ab – процесс адиабатического сжатия рабочего тела; изотерма bc – процесс подвода тепла Q1; изоэнтропа cd – процесс адиабатического расширения рабочего тела; изотерма da – процесс отвода тепла Q2 к холодному источнику (окружающей среде). Одновременно изотермы bc и da - соответственно процессы отвода тепла от горячего источника и подвода тепла к холодному источнику. В этом, как и в любом другом, обратимом цикле значения изменения энтропии горячего и холодного источников равны между собой по абсолютной величине и имеют обратные знаки, т.е.

- DSг = DSx

Конечное изменение энтропии Sт рабочего тела, совершающего замкнутый процесс, будет равен нулю. Приращение энтропии системы, равное алгебраической сумме энтропии всех тел рассматриваемой системы (обеих источников тепла и рабочего тела), также равно нулю :

DSc = åDSi = DSг +DSx +DSт = 0.

Этим подтверждается, что цикл Карно действительно дает максимальную работу.

Из рисунка находим :

Q1 = TгDSг = Т1DSг ;

Q2 = T0DSx = T2DSг,

Отсюда

Lц = Q1 – Q2 = (T1 – T2)DSг.

С учетом того, что Sг = Q1/T1, получим

Lц = Q [(T1-T2)/T1].

Термический к. п. д. этого цикла

ht = Lц /Q1 = 1 – T2/T1 = ht мах

С помощью прямого цикла Карно можно доказать, что отводимое к холодному источнику тепло Q2min не является потерей энергии, а представляет собой тот «балласт», ту непревратимую часть энергии, которая в любой момент, без затраты какой-либо дополнительной работы, может быть отнята от холодного источника и возвращена горячему.

Здесь следует заметить, что осуществляя обратный цикл Карно, можно, затратив работу Lц , получить и отдать горячему источнику тепла Q1 ровно столько, сколько было от него получено в прямом цикле, а от холодного источника будет отобрано в точности такое же количества тепла Q2min , сколько ему было отдано в прямом цикле.

ТЕПЛОВАЯ ИЗОЛЯЦИЯ.

Теплоизоляция – это защита зданий, промышленных установок (или отдельных их узлов) от нежелательного теплового обмена с окружающей средой. Так, например, в строительстве и теплоэнергетике теплоизоляция необходима для уменьшения тепловых потерь в окружающую среду, в холодильной и криогенной технике – для защиты аппаратуры от притока тепла извне.

Теплоизоляция обеспечивается устройством специальных заграждений, выполняемых из теплоизоляционных материалов (в виде оболочек, покрытий и т.п.) и затрудняющих теплопередачу; сами эти теплозащитные средства также называются теплоизоляцией.

При преимущественно конвективном теплообмене для теплоизоляции используются ограждения, содержащие слои материала, непроницаемого для воздуха; при лучистом теплообмене – конструкции из материалов, отражающих тепловое излучение (например из фольги, металлизированной лавсановой пленки); при теплопроводности (основной механизм переноса тепла) – материалы с развитой пористой структурой.

Эффективность теплоизоляции при переносе тепла теплопроводностью определяется термическим сопротивлением ( R) изолирующей конструкции R = d /l , где d - толщина слоя изолирующего материала, l - его коэффициент теплопроводности.

Повышение эффективности теплопроводности достигается применением высокопористых материалов и устройством многослойных конструкций с воздушными прослойками.

В тепловых промышленных установках теплоизоляция обеспечивает значительную экономию топлива, способствует увеличению мощности тепловых агрегатов и повышению их КПД, интенсификации технологических процессов, снижению расходов основных материалов. Экономическая эффективность теплоизоляции в промышленности часто

оценивается коэффициентом сбережения тепла

Где Q1 – потери тепла без теплоизоляции, а Q2 – с теплоизоляцией.

Задача теплоизоляции зданий – снизить потери тепла в холодный период года и обеспечить постоянство температуры в помещениях в течении суток при колебаниях температуры наружного воздуха. Применяя для теплоизоляции эффективные теплоизоляционные материалы, можно существенно уменьшить толщину и снизить массу ограждающих конструкций и, т.о. сократить расход основных стройматериалов.

Страницы: 1 2 3 4 5