где сумма .

Найдем: С; (3.26)

С; (3.27)

С; (3.28)

Проверка: сумма ;

12,3 + 4,3 + 8,5 = 25,1 С;

Отсюда

С; (3.29)

С; (3.30)

Введем поправку в коэффициенты теплоотдачи, определив .Критерий Прандтля для смеси бензол-толуол при С;

; (3.31)

где [1, с.262]; [1, с.556]; [1, с.561].

Коэффициент теплоотдачи для смеси:

(3.32)

Коэффициент теплоотдачи для воды:

(3.33)

где [1, таб. XXXIX];

Исправленные значения К, q, и (3.23):

;

; (3.34)

С; (3.35)

С; (3.36)

(3.37)

(3.38)

Дальнейшее уточнение , и других величин не требуется, так как расхождение между крайними значениями не превышает 5%.

1.4. Расчетная площадь поверхности теплопередачи:

; (3.39)

запас

Вариант 2. Теплообменник «кожухотрубный» (ГОСТ 15120-79)

2.1. Скорость течения в трубах, для обеспечения турбулентного режима, должна быт более

2.2. Составим схему процесса теплопередачи (Рис. 3.2).

а) В трубное пространство. Определим критерии Рейнольдса и Прандтля для смеси бензол-толуол. Рассчитаем Рейнольдс по формуле (3.12)

Бензол-толуол Вода

Рис. 3.2 (ко второму варианту расчета)

;

Критерий Прандтля (3.13).

;

где =0,14 Вт/(м К) - коэффициент теплопроводности смеси бензол-толуол [1, рис. X].

Для выбора формулы расчета коэффициента теплоотдачи рассчитаем значение GrPr при Re < 10000.

где - плотность воды при 48,5 С [1, таб. XXXIX]; ; и - плотности смеси при 25 и 80,5 С; =0,00045 Па с [1, с.556] - динамический коэффициент вязкости смеси при 48,5 С.

;

Для вертикального расположения труб примем выражение [1, форм. 4.28]

примем значение = 1 с дальнейшей поправкой где и вязкость смеси бензол-толуол при 48,5 С и температуре стенки соответственно. Рассчитаем по формуле (3.20).

;

Коэффициент теплоотдачи для смеси бензол-толуол (3.15):

;

б) Межтрубное пространство. Рассчитаем коэффициент теплоотдачи для воды. Скорость воды в межтрубном пространстве (3.16).

;

Критерий Рейнольдса для воды (3.17):

;

где =0,0011 Па с [1, таб. XXXIX], = 998 при температуре +17,5 С;

Критерий Прандтля для воды при +17,5 С (3.18):

;

где =0,59 Вт/(м К) - коэффициент теплопроводности воды [1, рис. XXXIX].

Для выбора формулы расчета коэффициента теплоотдачи рассчитаем значение GrPr при Re < 10000 (3.19).

;

где - плотность воды при 17,5 С [1, таб. XXXIX]; ; и - плотности воды при 10 и 25 С; =0,0011 Па с [1, таб. XXXIX] - динамический коэффициент вязкости воды при 17,5 С.

;

Для вертикального расположения труб примем выражение [1, форм. 4.28]

примем значение = 1 с дальнейшей поправкой где и вязкость воды при 17,5 С и температуре стенки соответственно (3.20).

;

Коэффициент теплоотдачи для воды (3.21):

;

Рассчитаем термическое сопротивление стенки и загрязнений [1, таб. XXXI] (3.22):

;

Коэффициент теплопередачи (3.23):

;

Поверхностная плотность потока (3.24):

;

2.3. Определим ориентировочно значения и , исходя из формулы

(3.25).

Найдем: С; (3.26)

С; (3.27)

С; (3.28)

Проверка: сумма ;

13,9 + 3,6 + 7,6 = 25,1 С;

Отсюда

С; (3.29)

С; (3.30)

Введем поправку в коэффициенты теплоотдачи, определив . Для смеси бензол-толуол при С и воды при С;

Коэффициент теплоотдачи для смеси (3.33):

где - кинематическая вязкость [1, с.556].

Коэффициент теплоотдачи для воды (3.33):

где - вязкость воды при температуре стенки [1, таб. XXXIX];

Исправленные значения К, q, и (3.23),(3.34),(3.35) и (3.36):

;

;

С;

С;

Проверка расхождения по формулам (3.37) и (3.38).

Дальнейшее уточнение , и других величин не требуется, так как расхождение между крайними значениями не превышает 5%.

2.4. Расчетная площадь поверхности теплопередачи (3.39):

;

запас

4.Гидравлический и экономический расчет

Расчет гидравлического сопротивления. Сопоставим два выбранных варианта кожухотрбчатых теплообменников по гидравлическому сопротивлению.

Вариант 1. Скорость жидкости в трубах

; (4.1)

; (4.2)

Коэффициент трения рассчитываем по формуле (4.2):

;

где - высота выступов шероховатости на поверхности, d - диаметр трубы.

Диаметр штуцеров в распределительной камере - трубного пространства, - межтрубного пространства [2, с.55].

; (4.3)

Рассчитаем скорость в штуцерах по формуле (4.3).

В трубном пространстве следующие местные сопротивления: вход в камеру и выход из нее, 5 поворотов на 180 градусов, 6 входов в трубы и 6 выходов из них. В соответствии с формулой [2, форм. 2.35] получим

(4.4)

Рассчитаем гидравлическое сопротивление по формуле (4.4)

Число рядов труб, омываемых потоком в межтрубном пространстве, ; примем округляя в большую сторону 9. Число сегментных перегородок x = 10 [2, таб. 2.7]

Диаметр штуцеров к кожуху - межтрубного пространства [2, с.55], скорость потока в штуцерах по формуле (4.3)

Скорость потока в наиболее узком сечении [2, таб. 2.3]

(4.5)

В межтрубном пространстве следующие местные сопротивления: вход и выход жидкости через штуцера, 10 поворотов сегменты и 11 сопротивлений трубного пучка при его обтекании

(4.6)

Рассчитаем гидравлическое сопротивление по формуле (4.6)

Вариант 2. Скорость жидкости в трубах (4.1)

;

Коэффициент трения рассчитываем по формуле (4.2):

;

Диаметр штуцеров в распределительной камере - трубного пространства, - межтрубного пространства [2, с.55].

Рассчитаем скорость в штуцерах по формуле (4.3).

В трубном пространстве следующие местные сопротивления: вход в камеру и выход из нее, 3 поворотов на 180 градусов, 4 входов в трубы и 4 выходов из них. В соответствии с формулой [2, форм. 2.35] рассчитаем гидравлическое сопротивление по формуле (4.4)

Число рядов труб, омываемых потоком в межтрубном пространстве, ; примем округляя в большую сторону 9. Число сегментных перегородок x = 10 [2, таб. 2.7]

Диаметр штуцеров к кожуху - межтрубного пространства [2, с.55], скорость потока в штуцерах по формуле (4.3)

Скорость потока в наиболее узком сечении [2, таб. 2.3]

(4.5)

В межтрубном пространстве следующие местные сопротивления: вход и выход жидкости через штуцера, 10 поворотов сегменты и 11 сопротивлений трубного пучка при его обтекании. Рассчитаем гидравлическое сопротивление по формуле (4.6)

5.Экономический расчет

Вариант 1. Масса теплообменника по [2, таб. 2.8]

Чтобы оценить стоимость аппарата необходимо рассчитать массу теплообменных труб.

(5.1)

где по [1, с.529]

Доля массы труб от массы всего теплообменника

Цена единицы массы теплообменника по [2, таб. 2.17] Цтр = 0,99 руб/кг. Цена теплообменника

Энергетические затрату с учетом КПД насосной установки на прокачивание горячей жидкости по трубам составит:

(5.2)

где по практическим расчетам [2, с.82].

Энергетические затраты на прокачивание холодной жидкости по межтрубному пространству

(5.3)

Приведенные затраты составят

(5.4)

где 8000 - время работы насосов в году; = 0,02 - стоимость одного киловата энергии руб/кВт.

Вариант 2. Масса теплообменника по [2, таб. 2.8]

Чтобы оценить стоимость аппарата необходимо рассчитать массу теплообменных труб (5.1).

Доля массы труб от массы всего теплообменника

Цена единицы массы теплообменника по [2, таб. 2.17] Цтр = 0,975 руб/кг. Цена теплообменника

Энергетические затрату с учетом КПД насосной установки на прокачивание горячей жидкости по трубам составит (5.2):

где по практическим расчетам [2, с.82].

Энергетические затраты на прокачивание холодной жидкости по межтрубному пространству (5.3)

Приведенные затраты составят (5.4)

6.Выводы

Для наглядности результаты расчетов сведем в таблицу. Из (таб. 1) видно, что разница между приведенными затратами выбранных вариантов

Таблица 1.

Технико-экономические показатели

Вариант 1

Вариант 2

D, м

0,6

0,6

L, м

4

4

K,

306,7

250,1

F,

61

65

M, кг

2290

2290

0,03495

0,01379

680,1

669,9

5,6

2,4

П,

685,7

672,3

незначитель

Страницы: 1 2 3 4 5 6 7 8 9 10 11