Теплопроводность через сферическую оболочку. КурсоваяМатериалы / Теплопроводность через сферическую оболочку. КурсоваяСтраница 6
В этом уравнении учтено, что вектор нормали к изотермической поверхности n параллелен радиус-вектору r. Поэтому производная может быть записана как .
Определим зависимость плотности теплового потока j от r. Для этого сначала вычислим тепловой поток q через сферу произвольного радиуса r > R.
. (2.28)
В частности, тепловой поток q1 через внутреннюю сферу радиусом R1 и тепловой поток q2 через наружную сферу радиусом R2 равны
(2.29)
Все эти три потока создаются одним и тем же источником мощностью P. Поэтому все они равны P и поэтому равны между собой.
. (2.30)
С учётом (2.28) и (2.29) это равенство можно записать в виде:
. (2.31)
Учитывая, что
,
получаем искомую зависимость плотности теплового потока j от радиуса r:
, (2.32)
где C1 - это константа, определяемая формулой
. (2.33)
Физический смысл полученного результата достаточно ясен: это известный закон обратных квадратов, характерный для задач со сферической симметрией.
Теперь, так как функция j(r) известна, можно рассматривать уравнение (2.27) как дифференциальное уравнение относительно функции T(r). Решение этого уравнение и даст искомое распределение температур. Подставив в (2.27) выражение (2.32) и заданную функцию , получим следующее дифференциальное уравнение:
. (2.34)
Данное уравнение решается методом разделения переменных:
.
Интегрирование этого выражения даёт:
Итак, функция T(r) имеет вид:
. (2.35)
Константы C1 и C2 можно определить из граничных условий T(R1) = T1, T(R2) = T2. Подстановка этих условий в (2.35) даёт линейную систему двух уравнений с двумя неизвестными C1 и C2:
. (2.36)
Вычитая из первого уравнения второе, получим уравнение относительно C1:
,
откуда
. (2.37)
С учётом этого выражение (2.35) можно записать в виде:
. (2.38)
Теперь первое граничное условие T(R1) = T1 даёт:
, (2.39)
откуда следует выражение для константы C2:
. (2.40)
Подстановка (2.40) в (2.39) даёт окончательное выражение для искомой функции T(r):
. (2.41)
Зная функцию T(r), можно из закона Фурье
определить и окончательное выражение для плотности теплового потока j как функции от радиуса r:
. (2.42)
Интересно отметить, что распределение температур не зависит от коэффициента b, но зато плотность потока пропорциональна b.
3 Заключение
В результате проделанной работы выведено дифференциальное уравнение теплопроводности применительно к данным конкретным условиям задачи и получено решение этого уравнения в виде функции T(r). Разработана программа TSO, рассчитывающая функцию T(r) и строящая её график для различных задаваемых пользователем параметров задачи . Листинг программы приведен в Приложении А.
Список используемых источников
Нащокин В.В. Техническая термодинамика и теплопередача: Учеб. пособие для вузов. — 3-е изд., испр. и доп. — М: Высш. школа, 1980. — 469 с.
Араманович И.Г., Левин В.И. Уравнения математической физики: М.: Наука, 1969. — 288 стр.