В этом уравнении учтено, что вектор нормали к изотермической поверхности n параллелен радиус-вектору r. Поэтому производная может быть записана как .

Определим зависимость плотности теплового потока j от r. Для этого сначала вычислим тепловой поток q через сферу произвольного радиуса r > R.

. (2.28)

В частности, тепловой поток q1 через внутреннюю сферу радиусом R1 и тепловой поток q2 через наружную сферу радиусом R2 равны

(2.29)

Все эти три потока создаются одним и тем же источником мощностью P. Поэтому все они равны P и поэтому равны между собой.

. (2.30)

С учётом (2.28) и (2.29) это равенство можно записать в виде:

. (2.31)

Учитывая, что

,

получаем искомую зависимость плотности теплового потока j от радиуса r:

, (2.32)

где C1 - это константа, определяемая формулой

. (2.33)

Физический смысл полученного результата достаточно ясен: это известный закон обратных квадратов, характерный для задач со сферической симметрией.

Теперь, так как функция j(r) известна, можно рассматривать уравнение (2.27) как дифференциальное уравнение относительно функции T(r). Решение этого уравнение и даст искомое распределение температур. Подставив в (2.27) выражение (2.32) и заданную функцию , получим следующее дифференциальное уравнение:

. (2.34)

Данное уравнение решается методом разделения переменных:

.

Интегрирование этого выражения даёт:

Итак, функция T(r) имеет вид:

. (2.35)

Константы C1 и C2 можно определить из граничных условий T(R1) = T1, T(R2) = T2. Подстановка этих условий в (2.35) даёт линейную систему двух уравнений с двумя неизвестными C1 и C2:

. (2.36)

Вычитая из первого уравнения второе, получим уравнение относительно C1:

,

откуда

. (2.37)

С учётом этого выражение (2.35) можно записать в виде:

. (2.38)

Теперь первое граничное условие T(R1) = T1 даёт:

, (2.39)

откуда следует выражение для константы C2:

. (2.40)

Подстановка (2.40) в (2.39) даёт окончательное выражение для искомой функции T(r):

. (2.41)

Зная функцию T(r), можно из закона Фурье

определить и окончательное выражение для плотности теплового потока j как функции от радиуса r:

. (2.42)

Интересно отметить, что распределение температур не зависит от коэффициента b, но зато плотность потока пропорциональна b.

3 Заключение

В результате проделанной работы выведено дифференциальное уравнение теплопроводности применительно к данным конкретным условиям задачи и получено решение этого уравнения в виде функции T(r). Разработана программа TSO, рассчитывающая функцию T(r) и строящая её график для различных задаваемых пользователем параметров задачи . Листинг программы приведен в Приложении А.

Список используемых источников

Нащокин В.В. Техническая термодинамика и теплопередача: Учеб. пособие для вузов. — 3-е изд., испр. и доп. — М: Высш. школа, 1980. — 469 с.

Араманович И.Г., Левин В.И. Уравнения математической физики: М.: Наука, 1969. — 288 стр.

Страницы: 1 2 3 4 5 6 7