X – балансовый коэффициент учитывающий неравномерность расхода теплоты на горячие водоснабжение в течении суток (для закрытых систем теплоснабжения X=1,2).

Суммарный перепад температур сетевой воды в подогревателях верхней и нижней ступени в течение всего отопительного периода постоянен и определяется:

; (4.2.2.)

Задавая величину недогрева водопроводной воды до температуры греющей воды в нижней ступени подогревателя (∆t = 5 ÷ 10 °С) определяют температуру нагреваемой воды после первой ступени подогревателя (t') при температуре наружного воздуха, соответствующей точки излома графика (t'н): t' = – ∆t'н; (4.2.3.)

Штрих обозначает, что значение взяты при температуре точки излома графика.

Курсовой проект “Теплоснабжение”.

9

Перепад температур сетевой воды в нижней ступени подогревателя (δ2) при различных температурах наружного воздуха определяется:

при t'н: δ'2 = δ·(t' – tc)/(th – tc); (4.2.4.)

при to: δ2 = δ(τ2 – tc)/(τ'2 – tc); (4.2.5.)

th – температура воды поступающая в систему горячего водоснабжения.

tc – температура холодной водопроводной воды в отопительный период.

Зная δ2 и δ'2 находим температуру сетевой воды от обратной магистрали по повышенному температурному графику:

τ2П= τ2 – δ2; (4.2.6.)

τ'2П = τ'2 – δ'2; (4.2.7.)

Перепад температур сетевой воды в верхней ступени подогревателя при t'н и tо:

δ'1 = δ – δ'2; (4.2.8.)

δ1 = δ – δ2; (4.2.9.)

Температуры сетевой воды подающей магистрали тепловой сети для повышенного температурного графика определяются по следующим формулам:

τ1П= τ1 – δ1; (4.2.10.)

τ'1П = τ'1 – δ'1; (4.2.11.)

Расчёт графика центрального качественного регулирования отпуска теплоты.

– регулирование отпуска теплоты принимают по нагрузке на отопление. При этом в тепловой сети поддерживается отопительно-бытовой температурный график (формулы 4.1.)

Данные для расчёта графика: τ1= 130 °С

τ2 = 70 °С

ti = 18 °С

to = – 48 °С

τэ = 95 °С

Минимальную температуру сетевой воды в подающем магистрали принимается равной 70 °С (на уровне 70 °С график срезается).

Курсовой проект “Теплоснабжение”.

10

5. Гидравлический расчёт тепловых сетей.

5.1. Задачи гидравлического расчёта.

В задачу гидравлического расчёта входят:

1. Определение диаметров,

2. Определение величины давлений (напоров) в различных тачках сети,

3. Определение падения давления (напора),

4. Увязка всех тачек системы при статической и динамическом режимах с целью обеспечения допустимых давлений и требуемых напоров в сети и абонентских установок.

Результаты гидравлического расчёта дают исходный материал для решения следующих задач: 1. Определение капиталовложений, расхода металла и основного объёма работ по сооружению тепловой сети,

2. Установление характеристик циркуляционных и подпиточных насосов, и. их размещение,

3. Выяснение условия работы тепловой сети и абонентских систем и выбора схем присоединения абонентских установок,

4. Выбор авторегулятора для тепловой сети и абонентских вводов,

5. Разработка режимов эксплуатации.

5.2. Основные расчётные зависимости.

При гидравлическом расчёте тепловых сетей определяют потери давления на участках трубопровода для последующей разработки гидравлических режимов и выявление располагаемых напоров на тепловых пунктах потребителей.

Гидравлический расчёт производится на суммарный расчётный расход сетевой воды, складывающийся из расчётных расходов на отопление, вентиляцию и на горячие водоснабжение.

Расчётные расходы воды определяют <кг/ч>:

a) максимальный расход воды на отопление:

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15