5.6.2. Физико-химические свойства древесиныКотлы / Дачные бани и печи. Принципы конструирования / 5. Климатический (отопительный) модуль / 5.6.2. Физико-химические свойства древесиныСтраница 3
Рис. 81. Динамика увлажнения сосновых досок сечением ЗОх 110 мм с влагоизолированны-ми торцами в горячей воде 96° С (1), в среде насыщенного пара над кипящей водой при атмосферном давелии (2) и в холодной воде (3). Под влажностью древесины здесь понимается отношение массы воды во всей доске в целом к массе доски в абсолютно сухом состоянии, то есть усреднённая величина локальных относительных влажностей всех зон доски (внутренних и внешних).
При попадании на сухие дрова воды (дождя), влажность дров возрастает (рис. 81), но по другим количественным закономерностям, нежели уменьшение влажности по сушке. Это объясняется тем, что сушка сопровождается перемещением в капиллярах паров воды, а при увлажнении вода перемещается по капиллярам в виде жидкости. Относительно медленное увлажнение древесины на рисунке 81 объясняется не столько плохой смачиваемостью поверхности древесины водой (что также имеет место), сколько низкой скоростью просачивания воды в капиллярах. При этом в первые часы контакта сухой древесины с водой происходит сильное увлажнение (до 50-100%) внешних зон древесины, хотя центральные (внутренние) зоны древесины ещё долго остаются сухими.
Рис. 82. Временной ход распределения относительной влажности древесины \у в толщине доски толщиной хо: а - при высушивании с очень малой скоростью, б - при высушивании с большой скоростью (в среде горячего сухого воздуха), в - при увлажнении водой или водяным паром, 1:о - начальный момент времени, 1:1, 1:2, tз, 1^4 - последовательные моменты времени.
Неоднородное распределение относительной влажности древесины в объёме доски или полена является обычным явлением. Так, даже све-жесрубленная древесина хвойных пород имеет в центральной сердцевинной части ствола влажность 35-40%, а в периферийных зонах 100-140% (при средней влажности по стволу в целом 90%). Неоднородность влажности внутри древесины может возникнуть и при сушке влажной (и увлажнении сухой) древесины. Действительно, дифференциальное уравнение нестационарного перераспределения влаги имеет вид dw/dt=Dd2w/dx2, абсолютно аналогичный дифференциальному уравнению нестационарной теплопроводности (см. раздел 5.5). Точно так же как и на рисунке 76, распределения функции (теперь уже относительной влажности древесины \у а не температуры Т) изменяются по времени по разному в зависимости от скорости сушки или увлажнения (в зависимости от параметра, аналогичного Био).
Рис. 83. Зависимость усреднённого коэффициента древесины бука поперёк волокон от относительной влажности древесины при температуре 50° С.
Рис. 84. Зависимость усреднённого коэффициента диффузионной влагопроводности древесины поперёк волокон от температуры при относительной влажности древесины ниже 30% (в условиях гигроскопичности): 1 - сосна, 2 - ель, 3 - берёза, 4 - бук, 5 - лиственница, 6 -дуб.
При низкой скорости сушки (например, при сушке в холодном воздухе) влажность внутри древесины успевает выравниваться, то есть выпуклость \у(х) в моменты времени 14, Х.2 и крайне низкая (рис. 82а). При большой скорости сушки кривая распределения влажности имеет вид косинусоиды, в начальные моменты 1л «урезанной» (рис. 826). В последующие моменты косинусоида может иметь изломы, показывающие, что коэффициент влагопроводности Э при влажностях выше 30%, может быть ниже, чем в условиях гигроскопичности (при влажности ниже 30%). Это указывает на то, что распространение гигроскопической влаги происходит легче, чем распространение воды в крупных порах (вопреки бытующему мнению). Однако распространение остаточных количеств гигроскопической влаги происходит неминуемо при низких градиентах влажности внутри древесины, а значит медленно.