В четвёртых, имеется возможность создать высокотеплоёмкий тепловой источник в низкотеплоёмком помещении (рис. 66в). В дачном быту такой вариант используется довольно часто в рядовых (бедняцких) исполнениях: дешёвая кирпичная печь-каменка в дешёвом каркасно-утеп-лённом строении. Перспективность таких конструкций вовсе не очевидна. Более того, это направление считается устаревшим и никогда не обсуждается ни в быту, ни в литературе. Тем не менее именно с этим направлением связано всё будущее гигиенических бань, в то время как предыдущие варианты (рис. 66а, б, г) останутся в основе досуговых бань.

Суть решения (рис. 66в) состоит в том, что высокотеплоёмкий тепловой источник аккумулирует внутри себя столь большое количество тепла, что если его вывести в помещение, то низкотеплоёмкие холодные стены быстро нагреются до необходимой температуры. Ситуация в чём-то сходна с технологией прогрева помещения острым паром, образующимся при поддаче на каменку кирпичной печи (рис. 66а). Но с одним замечанием: если в случае прогрева высокотеплоёмких стен необходима очень большая мощность, которая может быть обеспечена только паром, то в случае низкотеплоёмких стен эта мощность может быть снижена до столь низкого уровня, что вполне достаточно воздушное выведение тепла за счёт продува воздухом внутренностей печи. В результате помещение бани не увлажняется и потому может быть размещено в жилой зоне. Например, трубчатый электрический нагреватель (ТЭН), пусть с очень низкой мощностью, но долго, нагревает большую каменку, заложенную в очень хорошо утеплённый корпус в виде ящика с крышкой. При необходимости быстрой протопки бани, дачник просто-напросто открывает крышку ящика или продувает каменку пылесосом. За счёт нагрева воздуха от камней нагреваются и стены бани. Ясно, что даже самые обычные в быту электрические мощности порядка 1 кВт могут накопить за неделю в камнях 150 Квт-час тепла, что теоретически вполне достаточно для протопки даже бревенчатой бани.

Эффективность указанной схемы повышается с увеличением теплоёмкости теплового источника и уменьшением теплоёмкости стен. Приведём для справки теплоёмкости ряда теплоаккумулирующих материалов (для песка в насыпном состоянии).

Наиболее просто использовать для теплоаккумуляции металл и камень, которые можно

Наиболее просто использовать для теплоаккумуляции металл и камень, которые можно нагреть до очень высоких температур порядка 1000°С, и запасать тем самым много тепла, тем более, что соответствующие теплоизоляционные материалы имеются (перлит, шамот, базальтовая и каолиновая вата и т. п.). Но камень или металл в виде единого сплошного блока (монолита) использовать сложно: необходимы способы ввода и вывода тепла из монолитного камня или металла - испарительно-кон-денсационные (как при поддачах) или вентиляционные (продувом воздуха). Поэтому каменные и металлические материалы чаще используются в виде кусков: камней неправильной формы или блоков (кирпичей) для более плотной упаковки. В банях такие теплоаккумуляторы известны в форме каменок - каменных засыпок. Появились и первые бытовые напольные теплонакопители (внешне похожие на электрические масляные обогреватели), потребляющие энергию только ночью (когда стоимость электроэнергии минимальна), а днём только отдающие накопленное тепло в жилые помещения. Начат выпуск теплонакопителей для саун в виде дровяной печки-термоса с 60 кг камней, а также в виде электрической печи-аккумулятора со 100 кг камней, постоянно работающей в режиме ожидания с малой электрической мощностью. Появились первые разработки банных печей с вращающимся теплоёмким контейнером или монолитным камнем (СИ. Несов, Патент РФ № 49191, 2004 г.).

Страницы: 1 2 3 4